

Code No: C7611 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.TECH I SEMESTER EXAMINATIONS, APRIL/MAY-2012 COMPUTATIONAL STRUCTURAL ANALYSIS (AEROSPACE ENGINEERING)

Time: 3hours

Max.Marks:60

Answer any five questions All questions carry equal marks

- - -
- 1. a) What is Galerkin Method? Solve the two noded line element problem by Galerkin Method.
 - b) Explain Modules of a multidisciplinary simulation program.
- 2. Derive the shape functions for Quadratic 1D element. And also show $\sigma = E$ Bq. where B is element strain displacement matrix. Draw figures for shape functions.
- 3. Derive the equation of nodal centrifugal forces for a flat shell element.
- 4. Assemble Stiffness, displacement and Force Matrix in the equation F = KU for five node bar element with A₁l₁E, A₂l₂E, A₃l₃E, A₄l₄E. Consider node (1) fixed. At node 5 applied tensile force F₁ is applied and at node 2 Compressive force F₂ is applied.
- 5. a) Explain difference between Lumped Mass and Consistent Mass.
- b) Find out the Natural frequency of the beam shown in the figure.

- 6. Explain Material Non linearity. Use Prandtl Reuss Equation combined with the von Mises field criteria.
- 7. A metallic fin with thermal conductivity $K = 360 \text{ W/m}^{0}\text{C}$, 1mm thick and 100 mm long extends from a plane wall whose temperature is 235^{0}C . Determine the distribution and amount of heat transferred from the fin to air at 20^{0}C with $h = 9 \text{ W/m}^{2}$ °C width of the fin is 1000 mm. Assume tip is insulated.

8. Explain briefly the discretization of the Euler Equations.